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ABSTRACT We examine the adhesion of biomembranes to substrates topographically patterned with 
concave nanopits, and identify several universal features in the adhesion process. We find three distinct 
states, depending on whether the membrane remains flat above the nanopit, partially enters it, or 
completely adheres to it, and derive analytical conditions for the stability of these states valid for a very 
general class of nanopit shapes. Surprisingly, completely adhered states are always (meta)stable. We also 
show that the presence of many nanopits can increase or decrease the effective adhesiveness of a 
substrate, depending on the tension of the membrane and the strength of the membrane–substrate 
attraction. Our results have implications regarding several experimental methods which involve the 
formation of supported lipid bilayers on substrates patterned with nanopits, as well as observations of 
decreased spreading of cells and migration of cells towards regions of lower nanopit density on 
topographically patterned substrates. Furthermore, our predictions can also be directly tested in 
experiments exploring the adhesion of micropipette-aspirated giant vesicles to such substrates. 

Introduction 
Thanks to the advances of nanotechnology, it is now possible to fabricate solid substrates of very 
precise topography, with control over nanoscale features as small as 3 nm in the case of electron beam 
lithography. (1) These topographically patterned substrates are widely used in biophysical research as 
customizable, synthetic approximations to the nanoscale topography of the extracellular matrix that 
surrounds living cells. (2, 3) Topographies commonly investigated include spatial patterns of 
elongated nanogrooves, convex nanoposts, or concave nanopits on otherwise planar substrates. 
Variations in the shape and areal density of these features have been shown to strongly affect cell 
spreading, differentiation, migration, and proliferation. (3–11) 

Although some theoretical effort has been dedicated to understanding the interaction of 
biomembranes with rough substrates (12, 13) as well as with undulated substrates patterned with 
nanogrooves (14), the interaction of biomembranes with substrates patterned with nanopits is still not 
understood. Cells in contact with nanopit-patterned substrates have been shown to display decreased 
adhesion and spreading in a number of experiments, see Ref. 3 for a review. Cells in such substrates 
have also been observed to migrate towards regions of lower nanopit density. 6 Moreover, substrates 
patterned with nanopits are useful not only in experiments with biological cells, but also in more basic 
biophysical research. In recent years, supported lipid bilayers grown on substrates patterned with 
concave nanopits (15, 16) have been used as platforms for single-molecule spectroscopy of 
membrane-embedded proteins, (17) as well as for the study of membrane curvature sensing by 
proteins. (18) 

Given the wide relevance of nanopit-patterned substrates, it is surprising that a basic understanding of 
the underlying membrane–nanopit interaction is still lacking. Here, we intend to provide a 
comprehensive theory taking into account both the detailed interactions of the membrane with a single 
nanopit, as well as the collective effect of many nanopits on membrane adhesion, see Fig. 1. A 
membrane bound to such a patterned substrate, be it a cell, a giant vesicle, or a supported bilayer, will 
necessarily be bound to the planar surface of the substrate, see Fig. 1 (a), but it may or may not adhere 
to the surface of the nanopits, see Fig. 1(b). In fact, three qualitatively different states of the 
membrane can be distinguished, namely a non-adhered state (NA) if the membrane remains flat above 
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Figure 1: (a) A vesicle or cell (blue) and a supported bilayer (brown) adhere to a planar substrate 
topographically patterned with many concave nanopits, that may be distributed in any arbitrary 
manner. (b) Side-view displaying the geometry of a membrane adhering to a single smooth 
axisymmetric nanopit, with radius R and depth h. The membrane is said to be non-adhered (NA, red) 
if the position of the contact line between the bound and unbound membrane segments satisfies 
r*=R, partially-adhered (PA, yellow) if 0 < r* < R, and completely adhered (CA, green) if r* -> 0. 
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the nanopit, a partially-adhered state (PA) if the membrane only shallowly enters the nanopit, and a 
completely-adhered state (CA) if the membrane is fully bound to the nanopit and closely follows its 
shape. 

We will first examine the stability of these three states for a single nanopit, using both numerical 
computations, as well as analytical calculations. The analytical calculations show that the general 
features of the adhesion process are universal, i.e. independent of the detailed shape of the nanopit, 
which may range from a shallow concavity to a deep cylindrical pit with vertical walls. Then, we will 
use these results to describe the coarse-grained effect of many nanopits on membrane–substrate 
adhesion. We will show that the presence of many nanopits endows the substrate with an ‘effective 
adhesiveness’, which depends on the tension of the membrane and on the actual adhesive strength of 
the membrane–substrate attraction. We will relate our results to experiments in the literature 
concerning cells and supported lipid bilayers in contact with substrates patterned with nanopits, 
describe how our predictions might be tested in future experiments using micropipette-aspirated giant 
vesicles, and discuss how the presence of the nanopits might affect the integrity of the membrane, as 
well as its lateral organization in the case of multicomponent membranes. We finish with a discussion 
of membrane adhesion to nanopits with more general, complex shapes. 

Methods 
Curvature elasticity model 
Because the typical size of nanopits is several tens of nanometers or larger, (3, 18) many times larger 
than the membrane thickness, the membrane can be described within the theory of curvature 
elasticity. (19, 20) Its total energy is then given by 

2
bo2 d | | Σ .E M A W A Aκ= − +∫   (1)  

The first term in Eq. 1 corresponds to bending, where κ is the bending rigidity and M the mean 
curvature of the membrane at each point, with ( )1 2 / 2M C C≡ + , where 1C  and 2C  are the two 
principal curvatures. We will focus on symmetric bilayers without spontaneous curvature, and the 
contributions of Gaussian curvature to the energy can be ignored because we do not consider any 
changes of the topology of the membrane. (19) The second term represents the adhesion energy, 
which is included via a contact potential where | |W  is the adhesive strength of the membrane–
substrate interactions and boA  the area of membrane bound to the substrate. Finally, the third term 
represents the energetic cost of extracting an amount A of membrane area from a membrane reservoir 
at constant tension Σ . Such a reservoir is provided, for example, by the aspirated part of the 
membrane in the case of micropipette-held vesicles, or by the supported membrane itself in the case 
of supported lipid bilayers, in which case the tension is equal to the adhesive strength, Σ | |W= . 
Biological cells, on the other hand, have internal membrane reservoirs which are actively maintained 
at a constant tension. (21, 22) 

Osmotic pressure contributions to the energy in Eq. 1 are negligible if the nanopits are much smaller 
than the cell or vesicle, and we further assume that there is enough space (a couple of nm) between 
membrane and substrate for the aqueous medium to freely flow in and out of nanopits. We also note 
that, in the case of cells, interactions with nanopits larger than a few hundred nanometers will 
necessary involve rearrangements of the cellular cortex underlying the lipid bilayer. The theoretical 
results described here are therefore expected to be valid only for nanopit sizes in the range of tens to a 
couple hundred nanometers in the case of biological cells and giant vesicles, but should remain valid 
for pits of any size in the case of supported bilayers. 

Defining the shape of a nanopit 
We rigorously define a smooth axisymmetric nanopit of radius R by a height function ( )npz r , 
defined on the interval 0 r R≤ ≤ , that (i) is non-decreasing with only one inflection point in its 
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. 

Figure 2: Geometry of a cylindrical nanopit, composed of a toroidal rim of radius rimR , a vertical 
wall which corresponds to a cylindrical segment with radius wallR  and length L, and a hemispherical 
bottom segment with radius wallR . In this particular example, the membrane (yellow) is in a partially 
adhered (PA) state, with the contact line located at the vertical wall.
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domain, (ii) is differentiable at least once, and satisfies (iii) ( )np' 0 0z =  and (iv) ( )np' 0z R = . The 
first condition ensures that the nanopit has a simple shape with a single minimum at 0r = , while the 
latter three ensure that there aren’t any ‘kinks’ along the nanopit contour, at its bottom, or at the 
matching line between the nanopit and the planar substrate, respectively. An example for such a 
height function, which we will use throughout this work, is the polynomial 

( ) ( ) ( )2 3
np 3 / 2 /z r h r R r R= − 

 
  (2)  

which is plotted in Fig. 1(b) for / 2h R = . 

Besides the general class of nanopit shapes that can be fully described by a height function ( )npz r  
satisfying the four conditions above, we will also consider the extreme case of cylindrical nanopits 
with vertical walls. These constitute a singular kind of nanopit, in that they cannot be completely 
described by a height function ( )npz r , because such a height function would be non-differentiable at 

the position of the wall wallr R= , with ( )np wallz r R′ = → ∞ . As a typical example of such a 
cylindrical nanopit, we will consider piece-wise defined nanopits such as the one depicted in Fig. 2. 
Such a nanopit is composed of three distinct segments: a toroidal rim of radius rimR  that meets 
smoothly with the planar part of the substrate, a vertical wall corresponding to a cylindrical segment 
of radius wallR  and length L, and a bottom segment corresponding to a hemisphere of radius wallR . In 
line with the notation above for general nanopits, the radius of the nanopit is then given by 

wall rimR R R= + , and its total height is wall rimh R L R= + + . 

Throughout this work, we will focus on nanopits with shapes that satisfy the basic conditions of 
axisymmetry and smoothness just described. The relevance of these conditions will be highlighted in 
the last subsection of the Discussion, in which we will consider membrane adhesion to nanopits with 
more general shapes that do not satisfy some these conditions. 

Energy landscapes and contact curvature condition 
Using the standard shooting method for axisymmetric membranes, (19) we can numerically calculate 
the shapes of the unbound membrane segment that minimize the energy in Eq. 1 while smoothly 
matching the bound segment at any given contact radius *r r= . In this way, we can obtain the energy 
landscapes ( )*E r  describing the adhesion of the membrane to the nanopit. We say that the NA state 

is (meta)stable if the energy ( )*E r  has a boundary minimum at *r R= , the CA state is (meta)stable 

if ( )*E r  has a boundary minimum at * 0r = , and a PA state is (meta)stable if ( )*E r  has a local 

minimum at some value *0 r R< < . When the energy ( )*E r  has two minima, this corresponds to 
the coexistence of two (meta)stable states. In this case, the one with lowest energy of the two is said to 
be stable, while the other one is said to be metastable. When two (meta)stable states coexist, ( )*E r  
will also have a maximum between these two minima, corresponding to the top of the barrier between 
the two (meta)stable states. We call this a transition state. 

Alternatively, it is also possible to directly obtain the *r -values of all the equilibria present in such an 
energy landscape, i.e. all the (meta)stable and transition states, without having to calculate the full 
energy landscape. Indeed, in equilibrium, a subtle balance between stresses and moments at the 
contact line (20, 23) relates the principal curvature of the unbound segment of the membrane 
perpendicular to the contact line, ( )*C r⊥ , to the curvature of the nanopit at the same line ( )*

,npC r⊥  

via ( ) ( )* *
,np2 | | /C r W C rκ⊥ ⊥= + , or equivalently 
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( ) ( ) 2* *
,np / 2.W C r C rκ ⊥ ⊥

 = −    (3)  

In this case, one can simply obtain ( )*C r⊥  using the shooting method described above, and then 

introduce this value into Eq. 3 to obtain the equilibrium values of *r , which include both (meta)stable 
as well as transition states, as a function of the adhesive strength | |W . By considering how the 

equilibrium *r -values change with | |W  (and knowing that NA and CA states should be energetically 
preferred at low and high | |W , respectively) one can obtain the conditions under which NA, PA, or 
CA states are (meta)stable or become unstable, without the need to examine the energy landscapes 
explicitly. 

Small gradient approximation 
The shape of the unbound membrane ( )z r  in contact with an axisymmetric nanopit described by a 

height function ( )npz r  can be obtained analytically in the small gradient approximation ( )' 1z r � . 
The general axisymmetric solution is (24) 

( ) ( ) ( ) ( )1 2 3 0 4 0log / / /z r a a r a K r a I rλ λ λ≈ + + +   (4)  

where / Σλ κ≡ , and ( )I xα  and ( )K xα  are modified Bessel functions of the first and second 

kind, respectively. The constants ia  are defined by imposing membrane smoothness at 0r =  and 
*r r= , leading to 

( ) ( ) ( ) ( ) ( )* *
0 np 10 1 / / /z r z I r z r I rλ λ λ′− ≈ − +     (5)  

with *0 r r≤ ≤ , and the small gradient approximation remaining valid whenever ( )*
np 1z r′ � . 

Within this approximation, ( ) ( )C r z r⊥ ′′≈  and ( ) ( ),np npC r z r⊥ ′′≈ . The contact curvature condition 
in Eq. 3 can then be written explicitly as 

( ) ( )
( ) ( ) ( )

2* *
0 2 * *

np np*
1

/ /
.

2 2 /

I r I r
W z r z r

I r

λ λκ
λ λ

 +
′ ′′ ≈ −

 
 

  (6)  

Curvature of a membrane in contact with a vertical wall 
In the particular case of cylindrical nanopits with a vertical wall, it is possible to calculate exactly the 
curvature *

wall( )C r R⊥ =  of the membrane at the contact line where the membrane meets the wall. 
Indeed, suppose that the membrane is in an equilibrium state in which the contact line is located at the 
vertical wall, see Fig. 2. Because the shape of the unbound segment of the membrane does not depend 
on the height of the contact line along this wall (i.e., on how deep into the nanopit the membrane is), 
the energetic cost of moving this contact line up or down will be determined only by the energy of the 
bound segment. The energetic cost of moving the contact line downwards a distance zδ  is therefore 

( ) wall2
wall

2 | | Σ 2 .
2

E W R z
R

κδ π δ
 

= − + 
 
 

  (7)  

This energetic cost will be zero, and thus the membrane will be in equilibrium, if the adhesion 
contribution to the energy can compensate for both the bending and tension contributions, with 
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Lna

Lpa

DNA+CA

PA+CA

CA

li
n
e 4.7

30

0.01

Lna

Lpa

4.7

0.18

(a)

(b)

D D D

x x x x xx xx

Figure 3: (a) Equilibrium radius of the contact line *r  as a function of adhesive strength | |W , for 
varying values of membrane tension Σ ; and (b) Stability diagram displaying the coexistence of non-
adhered (NA), partially-adhered (PA), and completely-adhered (CA) states as a function of | |W  and 
Σ . The nanopit shape is given by Eq. 2 with / 0.1h R = , which is plotted in the inset of (a). In (a), 
solid and dashed colored lines represent (meta)stable and transition PA states, respectively; the dashed 
black lines correspond to the small gradient approximation in Eq. 6; grey horizontal lines at * 1r =  
and * 0r =  represent (meta)stable NA and CA states, respectively; and the vertical dotted lines mark 
the discontinuous transitions D at which NA states (red and blue) or PA states (green) switch 
metastability with CA states. In (b), the stability lines naL  and paL  meet at a triple point indicated by 

the blue asterisk; the red dotted line is the large tension limit of paL ; the eight green crosses 
correspond to the eight energy landscapes in Fig. 4; and the three colored arrows refer to the | |W -
values in Fig. 6(a). 
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0.1

0.18 (Lna)

0.23

0.275 (
D)

0.32

0.37 
(Lpa)

0.4

Figure 4:  Energy landscapes of adhesion ( ) ( ) ( )* *
∆E r E r E R≡ − , for the nanopit in Fig. 3, for 

membrane tension 2
Σ / 30R κ =  and eight different values of the adhesive strength | |W , 

corresponding to the eight crosses in the stability diagram of Fig. 3(b). It can be directly seen that, for 
all values of | |W , the CA state at * 0r =  is (meta)stable. With increasing | |W , the system crosses 
first the instability line naL  of the NA state (with *r R= ) towards a PA state (with *r Rˆ ), then the 
discontinuous transition D where the PA and CA states switch metastability, and finally the instability 
line paL  of the PA state towards the CA state.  
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2
wall

| | Σ .
2

W
R
κ= +   (8)  

Eq. 8 represents an equilibrium condition valid for the particular case in which the substrate–
membrane contact line is at a vertical wall. However, in such a situation the membrane must also 
satisfy the general equilibrium condition in Eq. 3. Putting both equations together, and noting that at 
the vertical wall we have *

,np wall( ) 0C r R⊥ = = , we conclude that the curvature of the membrane at 
the contact line with the wall is 

*
wall 2

wall

2Σ 1( ) .C r R
Rκ⊥ = = +   (9)  

Results 
Membrane interaction with a single nanopit 
Let us first consider the interaction of the membrane with a single nanopit. In Fig. 3(a), we plot the 
numerically calculated equilibrium contact radius *r  of the membrane as a function of the adhesive 
strength | |W , for an example nanopit with shape given by Eq. 2 with / 0.1h R = , for three 
representative values of membrane tension Σ . The curves show that CA states are always 
(meta)stable, for all values of | |W  and Σ , and that the transition from NA or PA to CA states is 
always discontinuous. For low tension, we find that increasing | |W  leads to an instability naL  of NA 

states towards CA states, whereas for tensions above a critical value 2
Σ 4.7 / Rκ� , NA states first 

transition continuously towards PA states, which then undergo an instability paL  towards CA states 

for even higher values of | |W . The value of | |W  corresponding to the instability naL  is found to be 

independent of membrane tension, and is given by 2| | 0.18 /W Rκ� . At the discontinuous transitions 
D, marked by vertical lines, the NA or PA states have equal energy as the CA states. These results are 
summarized in the corresponding stability diagram in Fig. 3(b), describing the stability of NA, PA, 
and CA states as a function of | |W  and Σ . The features just described can also be seen in the energy 
landscapes that we display in Fig. 4, corresponding to the case of a membrane with tension 

2
Σ 30 / Rκ=  and eight different values of the adhesive strength | |W , which correspond to the eight 
crosses in Fig. 3(b). In particular, one can directly see in the energy landscapes that the CA state is 
(meta)stable for all values of | |W , as well as how the discontinuous transition D and the instability 
lines of the NA and the PA states are crossed with increasing adhesive strength. 

The small gradient approximation in Eq. 6 is plotted as the black long-dashed lines in Fig. 3(a). This 
approximation works very well for shallow nanopits such as the one in Fig. 3(a), but becomes 
increasingly inaccurate for deeper nanopits with higher /h R  and ultimately breaks down for nanopits 
with vertical walls (see next subsection). Importantly, however, the approximation in Eq. 6 can make 
exact predictions regarding the stability limits of the CA state ( * 0r = ) and the NA state ( *r R= ) , 
because in these two limits the unbound membrane segment becomes exactly flat with ( ) 0z r′ ≡ , 
independently of the nanopit depth. 

In fact, we will now use Eq. 6 to show that the defining features of the membrane–nanopit interaction 
in Fig. 3 are universal, i.e. independent of the specific shape of the nanopit, as long as this shape 
satisfies the conditions described in the subsection Defining the shape of a nanopit of the Methods. 
First, let us evaluate Eq. 6 at * 0r = . This requires some care, because ( ) ( ) ( )0 2 1[ ] /I x I x I x+  

behaves as ( )2 / x O x+  around 0x = . The limit when * 0r →  of the first term inside the 
parenthesis can then be calculated as 
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( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

* * *

* *
0 2 * * *

np np np np np* **0 0 0
1

/ / 1 1lim lim lim 0 0
2 /r r r

I r I r
z r z r z r z z

r rI r

λ λ
λ λ→ → →

+
 ′ ′ ′ ′ ′′= = − =    

(10)  

where we have used the condition that ( )np 0 0z′ = . Substituting this into Eq. 6, we finally find 

| | 0W =   (11)  

which implies that, for axisymmetric nanopits with a smooth bottom (no kink), the CA state is a 
solution for vanishing adhesion and is always (meta)stable, for any value of the adhesive strength, 
membrane tension, and independently of the detailed shape of the nanopit. 

Second, for *r R=  the first term inside the parenthesis in Eq. 6 vanishes and we find 
2 2

np rim| | ( ) / 2 / 2W z R Cκ κ′′= =   (12)  

which defines the stability limit naL  of the NA state, and is indeed independent of membrane tension. 
This critical value of | |W  is however strongly dependent on the curvature of the nanopit rim 

( ) ( )np ,np rimz R C R C⊥′′ = = . If the nanopit meets the planar substrate with rim 0C = , i.e. without a 
curvature discontinuity, the NA state is unstable even for vanishing adhesion. For the example in 
Fig. 3, Eq. 12 with ( ) 2

np 6 /z R h R′′ = −  predicts 2 4| | 18 /W h Rκ= , resulting in 2| | / 0.18W R κ =  
for / 0.1h R = , which coincides with the numerical result in Fig. 3. We note that Eq. 12 could have 
been directly obtained from the contact curvature condition in Eq. 3, without recurring to the small 
gradient approximation, by noticing that in the NA state we have ( ) 0C R⊥ =  and ( ),np rimC R C⊥ = . 

Third, using Eq. 6, we can find a condition for the existence of a (meta)stable PA state by imposing 
that *

*d | | d 0
r R

W r
=

< . The condition reads 

( ) ( )
( ) ( ) ( )0 2

np np
1

/ /1 0
2 /

I R I RR z R Rz R
I R
λ λ

λ λ
+

′′ ′′′− <   (13)  

and, taking into account that ( )npz R′′  is always negative, and that ( ) ( ) ( )0 2 1[ ] /x I x I x I x+  is a 
monotonically increasing function for 0x > , defines a critical value of /R λ , and therefore of the 
membrane tension through 1/ Σ /λ κ≡ , above which (meta)stable PA states exist. For the example 
in Fig. 3(a-b), with ( ) 3

np 12 /z R h R′′′ = − , we find / 2.17R λ � , which means that the triple point at 

which the naL  and paL  lines meet is located at 2 2
Σ / 2.17 4.7R κ � � , coinciding with the numerical 

result in Fig. 3. Remarkably, the condition in Eq. 13 is invariant under the vertical scaling 
transformation ( ) ( )np npz r z rα→ , which implies that the critical tension remains the same if the 
shape of a nanopit is vertically ‘stretched’ ( 1α > ) or ‘compressed’ ( 0 1α< < ). For example, both 
the deep nanopit in Fig. 1(b) and the shallow nanopit in the inset of Fig. 3(a) have the same critical 
tension given by 2

Σ / 4.7R κ � . This is because both are described by the same height function in 
Eq. 2, the former with / 2h R = , the latter with / 0.1h R = , and therefore both are related by a 
vertical scaling transformation. Furthermore, by evaluating Eq. 13 at / 0R λ = , we find the condition 

( ) ( )np np 0z R Rz R′′ ′′′− <   (14)  

for PA states to exist for all values of Σ 0≥ , that is, nanopits that satisfy Eq. 14 will not display a 
triple point in their stability diagram. 
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Finally, let us examine the limit of large membrane tension, with 2
Σ / 1R κ � . In this limit, bending 

is negligible and the membrane will behave as a flat liquid interface satisfying the Young-like 
equation ( )| | Σ 1 cosW θ≈ − , where ( )*

nparctan z rθ ′=  is the angle between the substrate and the 

horizontal plane at the contact line *r . First, notice that the function ( )1 cos arctan x−  is 

monotonically increasing for 0x > . Second, the function ( )*
npz r′  will have a maximum at the value 

*
inr r=  at which the height function ( )*

npz r  has an inflection point, i.e. when ( )*
np in 0z r r′′ = = . The 

PA state will become unstable towards the CA state for adhesive strengths larger than the maximum 
of | |W  as a function of *r , which is given by 

( ){ }np in| | Σ 1 cos[arctan ]W z r′≈ −   (15)  

and represents the large tension behavior of the stability limit paL . For the nanopit in Fig. 3, we find 

in / 2r R=  and ( ) ( )( )np in 3 / 2 /z r h R′ = , leading to | | 0.011ΣW �  which is plotted as the red dotted 
line in Fig. 3(b). 

The interaction of a membrane with a nanopit of arbitrary shape (as long as this shape is axisymmetric 
and smooth, satisfying the conditions introduced in subsection Defining the shape of the nanopit) can 
therefore be universally described in the following way. The completely adhered (CA) state will be 
always at least metastable for all values of the adhesive strength | |W  or the membrane tension Σ . 
For low values of the adhesive strength | |W , lower than the tension-independent threshold given by 
Eq. 12, this CA state will coexist with the non-adhered (NA) state. For values of | |W  larger than this 
threshold, the NA state will typically become unstable towards a partially-adhered (PA) state, but it 
may also become unstable directly towards the CA state for certain nanopits if the membrane tension 
is low enough, see Eqs. 13–14. Even for large tensions, however, the PA state ultimately becomes 
unstable towards the CA state for large enough adhesive strengths, as approximated by Eq. 15 in the 
limit of large membrane tension. 

Membrane interaction with a single cylindrical nanopit 
An important class of nanopits corresponds to cylindrical nanopits with vertical walls, see Fig. 2. 
Cylindrical nanopits covered by a supported lipid bilayer have been used, for example, as waveguides 
for single-molecule spectroscopy of membrane-embedded proteins. (17) Such nanopits are 
particularly easy to produce and simple to describe, because their geometry is fully determined by 
their radius, their depth, and the curvature of their rim. Cylindrical nanopits with vertical walls 
represent an extreme, singular example of the general smooth axisymmetric nanopits that we have 
described above. One may thus wonder how the general results described above apply to cylindrical 
nanopits. In Fig. 5(a), we plot the numerically calculated equilibrium contact radius *r  of the 
membrane as a function of the adhesive strength | |W , for a cylindrical nanopit with cylinder radius 

wall 0.8R R= , rim radius rim 0.2R R= , and arbitrary wall length L, for a representative value of the 
membrane tension Σ . The corresponding stability diagram representing the stability of NA, PA, and 
CA states as a function of | |W  and Σ  is depicted in Fig. 5(b). The discontinuous transition D at 
which NA or PA states switch metastability with CA states is not displayed in this case, because it 
does depend on the specific choice of wall length L. 

As expected, the small gradient approximation in Eq. 6, which corresponds to the black long-dashed 
line in Fig. 5(a), completely breaks down in the proximity of the vertical wall when *

wallr R≈ . 

Nevertheless, it is still accurate in describing the stability of the CA and NA state, at * 0r =  and 
*r R= , respectively. Indeed, we first notice that the CA state is again (meta)stable for all values of 

the adhesive strength | |W  or the membrane tension Σ , as predicted by Eq. 11 above. Secondly, the 
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Lna
Lpa

PA+CA

CA

NA
+
CA

(a)

(b)

Lna Lpa

10
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n
e
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wall-rimhs-
wall

(iii) (ii) (i)

Figure 5: Interaction with a single cylindrical nanopit: (a) Equilibrium radius of the contact line *r  
as a function of adhesive strength | |W , for tension 2

Σ / 10R κ =  which is representative of all other 
values of the tension Σ ; and (b) Stability diagram displaying the coexistence of non-adhered (NA), 
partially-adhered (PA), and completely-adhered (CA) states as a function of | |W  and Σ . The shape 
of the nanopit is determined by wall 0.8R R= , rim 0.2R R= , and arbitrary L, see Fig. 2. The meaning 
of all lines and symbols is the same as in Fig. 3. In contrast to the latter figure, we do not indicate the 
location of the discontinuous transition D, which would depend on the specific value of the wall 
height L. The meaning of the labels (i–iii), ‘hs-wall’, and ‘wall-rim’ in (a) is explained in the text. 
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NA state again becomes unstable for sufficiently large values of the adhesive strength | |W , beyond 
the tension-independent stability line naL . As predicted by Eq. 12 with ( )np rim rim1/z R C R′′ = = − , the 

stability line naL  is in this case given by 

2
rim

| |
2

W
R
κ=   (16)  

which leads to 2| | / 12.5W R κ =  for rim 0.2R R= , coinciding with the numerical result in Fig. 5. 
The minimal adhesive strength required for the NA state to become unstable is therefore strongly 
dependent on the curvature of the rim, and becomes larger as the rim becomes more strongly curved, 
i.e. sharper. 

Inspection of the stability diagram in Fig. 5(b) shows that, for cylindrical nanopits, there is no triple 
point such as the one in Fig. 3(b). That is, in the case of cylindrical nanopits, the NA state will always 
become unstable towards a PA state, even for vanishing membrane tension. This may have been 
predicted using the condition for the absence of a triple point derived above, see Eq. 14. For 
cylindrical nanopits as discussed here we have ( )np rim rim1/z R C R′′ = = −  and ( )np 0z R′′′ = , and the 

condition in Eq. 14 reads rim1/ 0R− < , which is always satisfied. 

One may have thought that nanopits with vertical walls would be less analytically tractable than those 
without them, given that the small gradient approximation in Eq. 6 completely breaks down at the 
wall. This is however not the case, and in fact an exact expression for the stability limit of PA states 

paL  can be derived for cylindrical nanopits. As described in Methods, one can derive an exact 

expression for the curvature of the membrane at the position of the contact line *
wall( )C r R⊥ =  if this 

contact line is located at a vertical wall, see Eq. 9. Moreover, we note that a cylindrical nanopit such 
as the one in Fig. 2 displays three distinct curvatures along the vertical wall: (i) at the highest point 
where the rim meets the cylindrical segment the curvature is that of the rim, with 

*
,np wall rim( ) 1/C r R R⊥ = = − ; (ii) along the cylindrical segment, the curvature is 

*
,np wall( ) 0C r R⊥ = = ; and (iii) at the lowest point where the hemispherical bottom segment meets the 

cylindrical segment the curvature is that of the hemisphere, with *
,np wall wall( ) 1/C r R R⊥ = = . 

Now, combining Eq. 9 with Eq. 3, and introducing the three values (i–iii) for *
,np wall( )C r R⊥ = , we 

obtain three different values of the adhesive strength | |W , which correspond to the three dotted 
vertical segments in the example of Fig. 5(a). The largest of these three values, obtained from 
curvature (i), is given by 

2

2
wall rim

2Σ 1 1| |
2

W
R R

κ
κ

 
= + + 

 
  (17)  

and coincides exactly with the numerically-obtained instability line paL  in Fig. 5. Remarkably, the 
instability of PA states towards CA states described by Eq. 17 is independent of the depth of the 
nanopit as defined by the wall length L, as well as of the specific shape of the nanopit bottom. 

The values of | |W  obtained from curvatures (ii) and (iii) also have a physical meaning. For adhesive 
strengths in the interval obtained from (i) and (ii) 

2

2 2
wall rim wall

2Σ 1 1  ,
2 2

W
R R R

κ κ
κ

 
+ + > > Σ + 

 
  (18)  
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the transition state corresponding to the top of the energy barrier separating the NA or PA state from 
the CA state is represented by the state in which the contact line is located at the line where the rim 
and the vertical wall meet. This | |W -range is indicated by the label ‘wall-rim’ in Fig. 5(a). For 
adhesive strengths with 2

wall| | Σ / 2W Rκ= + , corresponding to point (ii), the transition state is 
degenerate and the top of the energy barrier is a ‘plateau’ corresponding to the contact line being 
located anywhere along the wall of the nanopit. For adhesive strengths in the interval obtained from 
(ii) and (iii) 

2

2 2
wall wall wall

2Σ 1 1
Σ  ,

2 2
W

R R R
κ κ

κ
 

+ > > + − 
 

  (19)  

the transition state is represented by the state in which the contact line is located at the line where the 
hemispherical bottom segment and the vertical wall meet. This | |W -range is indicated by the label 
‘hs-wall’ in Fig. 5(a). Finally, for even lower adhesive strengths the transition state will be 
represented by states where the contact line is somewhere along the hemispherical bottom segment. 

In summary, the interaction of membranes with cylindrical nanopits of arbitrary radius, rim curvature, 
or depth can be described in the following way. As in the case of non-cylindrical nanopits, the 
completely adhered (CA) state will be always at least metastable for all values of the adhesive 
strength | |W  or the membrane tension Σ . For low values of the adhesive strength | |W , below the 
tension-independent threshold given by Eq. 16, this CA state will coexist with the non-adhered (NA) 
state. Surprisingly, this threshold value is independent of the nanopit radius or depth, and only 
depends on the radius of curvature of the rim. For values of | |W  larger than this threshold, the NA 
state becomes unstable towards a partially-adhered (PA) state, independently of the membrane 
tension. Finally, for adhesive strengths larger than the threshold given by Eq. 17, the PA state 
becomes unstable towards the completely-adhered (CA) state. This latter threshold is dependent on 
the tension of the membrane, but again does not depend on the depth of the nanopit. Moreover, these 
two important thresholds are independent of the shape of the bottom of the nanopit. The main results 
described here are therefore valid even if the bottom of the cylindrical nanopit has a shape other than 
hemispherical. 

Effective adhesiveness of substrates patterned with many nanopits 
Now that we understand the interaction of the membrane with single nanopits, we turn to the 
collective effect of many nanopits on membrane–substrate adhesion, see Fig. 1(a). Suppose that a 
membrane is in contact with the substrate over a ‘projected’ area xyA  on the horizontal plane, and that 
this projected area spans N nanopits. The total energy of the system is given by 

( )( )2
np,Σ | | xy iE W A N R NEπ= − − + , where np,iE  is the interaction energy with a single nanopit. 

The subindex i can take the values NA,  PA,  CAi =  corresponding to the three possible states of the 
membrane–nanopit complex, depending on which of these states are (meta)stable. We can now define 
the effective adhesiveness eff| |W  of an equivalent, coarse-grained planar substrate without nanopits 

by rewriting the energy of the system as ( )effΣ | | xyE W A= − . Equating both expressions, we obtain 

( )2
eff np,| | | | Γ Σ | | /iW W W E Rπ= + − −   (20)  

where 2
Γ / xyN R Aπ≡  is the fraction of the projected area of the substrate that is covered in 

nanopits, which can range from Γ 0=  in the absence of nanopits to a maximum of 
Γ / 2 3 0.9π= �  for an optimal hexagonal packing of nanopits. 

This effective adhesiveness, rescaled as ( )eff| | / | | 1 / ΓW W − , is plotted in Fig. 6(a) for a substrate 
patterned with nanopits such as the one in Fig. 3, as a function of membrane tension, for the three 
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0.25W||

0.14

0.08 Lpa DD

h/R = 10.50.1

(a)

(b)

DD D

1

4

2

3

Figure 6: (a) Rescaled effective adhesiveness eff| |W  for a substrate patterned with nanopits such 
as the one in Fig. 3(a), with / 0.1h R = , as a function of tension Σ , for three different values of the 
real adhesive strength | |W , corresponding to the three arrows in Fig. 3(b). Solid lines correspond to 
all nanopits being in the lowest energy state, which might be NA, PA, or CA; whereas dashed, 
dashed-dotted, and dotted lines correspond to metastable NA, PA, and CA states, respectively. The 
points 1–4 represent a hysteresis cycle of decreasing-increasing tension, as described in the text. (b) 
Rescaled eff| |W  at Σ 0=  as a function of | |W , for the same type of nanopits as in (a) but for three 
different values of /h R . The corresponding nanopit shapes are depicted in the inset. Horizontal 
dashed lines indicate the asymptotes for large | |W  given by Eq. 23. 
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values of real adhesive strength | |W  indicated by the arrows in Fig. 3(b). In general, eff| |W  
decreases with increasing membrane tension. Because the membrane interactions with a single 
nanopit showed bistable behavior, with NA and CA, or PA and CA states sometimes coexisting, 

eff| |W  can also show two coexisting branches. Solid lines correspond to every nanopit being in its 
lowest energy stable state, which in turn translates into higher values of eff| |W . The lower values of 

eff| |W , corresponding to all nanopits staying in metastable NA, PA or CA states, are plotted as 
dashed, dashed-dotted, and dotted lines, respectively. 

The existence of bistable behavior should manifest itself as hysteresis in the observed adhesiveness 
when the membrane tension is increased or decreased. As an example, consider the case with 

2| | / 0.25W R κ =  depicted in Fig. 6(a). Adhesion measurements at high tension, to the right of paL , 
are expected to explore the PA branch. If, however, once in contact with the substrate the tension of 
the membrane is sufficiently decreased (to the left of paL ), the PA branch will become unstable and 
the system will fall into the CA branch with higher effective adhesiveness. Even if the tension is now 
increased back to its original value, the system will typically remain in the metastable CA branch, 
with effective adhesiveness lower than at the beginning of the cycle. The hysteretic cycle just 
described corresponds to the points 1–4 indicated in Fig. 6(a). 

For NA states, the interaction energy with a single nanopit is simply 2
np,NA ΣE Rπ= , and Eq. 20 

naturally predicts a decreased adhesiveness in the presence of nanopits, with 
( )eff| | | | 1 Γ | |W W W= − < , or equivalently ( )eff| | / | | 1 / Γ 1W W − = − . For PA states, we also find 

decreased adhesiveness, slightly larger but close to that of NA states, so that 
( )eff| | | | 1 Γ 1W W − −‰ . For CA states, on the other hand, the rescaled eff| |W  depends strongly on 
both | |W  and Σ . Indeed, the interaction energy for a CA state can be written as 

( )np,CA np be,npΣ | |E W A E= − + , where 2
npA Rπ>  is the surface area of the nanopit, and 

np

2
be,np 2 d 0

A

E M Aκ= >∫  is the bending energy of the membrane adhering to it. Introducing np,CAE  

into Eq. 20, we find 

( )( )2
np be,npeff

2

| | Σ| | 11
| | Γ | |

W A R EW
W W R

π
π

− − − − = 
 

  (21)  

which increases both with increasing | |W  and with decreasing Σ . In fact, Eq. 21 predicts an 
increased adhesiveness in the presence of nanopits, with eff| | | |W W> , whenever the numerator is 
positive, i.e. when 

be,np
2

np

| | Σ
E

W
A Rπ

− >
−

  (22)  

and a decreased adhesiveness otherwise. Furthermore, in the limit of very adhesive substrates with 
| |W  much larger than both Σ  and 2/ Rκ , Eq. 21 predicts that the nanopit-induced increase in 
substrate adhesiveness saturates to 

npeff
2

| | 11 1 ,
| | Γ

AW
W Rπ

 
− ≈ − 

 
  (23)  

which becomes larger with increasing nanopit depth. 
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To illustrate this behavior, we have plotted in Fig. 6(b) the rescaled eff| |W  as a function of | |W , for 
Σ 0=  and three different values of /h R , i.e. of nanopit depth. We focus only on the stable branches, 
which are the NA branch for low adhesion and the CA branch for higher adhesion, beyond the 
discontinuous transition D. The asymptotes for large | |W  given by Eq. 23 are represented by the 
horizontal dashed lines. As predicted, for low | |W  the presence of nanopits acts to decrease the 
effective adhesiveness of the substrate, with eff| | | |W W< , whereas for sufficiently high | |W  the 
nanopits increase surface adhesiveness, with eff| | | |W W> . Furthermore, for low values of | |W , the 
effective adhesiveness decreases both with increasing nanopit depth as well as with increasing nanopit 
coverage Γ ; the opposite is true for high values of | |W . 

Discussion 
Supported lipid bilayers 
Supported lipid bilayers grown on substrates topographically patterned with nanopits have recently 
been proposed as platforms for single-molecule spectroscopy of membrane-embedded proteins, (17) 
as well as for the study of membrane curvature sensing by proteins. (18) In these experimental 
methods, it is essential that the supported bilayer closely follow the shape of the nanopits, i.e. be 
found in the CA state. It is therefore important to understand under which conditions we can expect to 
find CA states over NA or PA states. 

The tension of a supported membrane is fixed by the adhesiveness of the substrate itself, with 
Σ | |W= . (25) This can be intuitively understood by realizing that, because the total membrane area of 
the supported bilayer is fixed, any new area Aδ  brought into the nanopit was previously adhering to 
the flat part of the substrate, which implies an energetic cost | |E W Aδ δ= + . In the case of 
supported bilayers, therefore, the adhesive strength and the membrane tension are not independent 
variables, and we can only explore one-dimensional cuts Σ | |W=  through the two-dimensional 

( )| |,ΣW  stability diagrams such as those in Figs. 3(b) and 5(b). 

Supported lipid bilayers are typically grown by the adhesion and rupture of vesicles onto the 
substrate. (15, 16) Our results imply that how a supported bilayer in a CA state can be successfully 
generated will depend on the size of these vesicles, in particular, on whether the vesicles are smaller 
or larger than the size of the nanopit. First, let us consider the case of vesicles that are smaller than the 
nanopit. Rupture of the vesicles onto the surface of the nanopit will generate a CA state from the 
beginning, and the important question is then whether this initial CA state will remain stable. Luckily, 
our results above show that CA states are (meta)stable for all values of the adhesive strength | |W , 
and independently of the nanopit shape. It is therefore expected that supported bilayers in a CA state, 
i.e. closely following the shape of the nanopits, can be easily generated from the adhesion and rupture 
of sufficiently small vesicles onto the substrate, in the sense that the vesicles are small enough to enter 
the nanopit. Theoretical studies show that small vesicles can adhere to concave surfaces more easily 
than to flat surfaces. (26, 27) 

Now, let us consider the case of supported membranes generated by the adhesion and rupture of 
vesicles that are larger than the nanopits, in the sense that they are too large to enter the nanopit. 
Rupture of such vesicles onto the substrate will lead to the initial formation of NA or PA states, and 
the important question is then whether or not these states will be unstable towards a CA state. Here, 
we find an interesting behavior. Inspection of Fig. 3(b), corresponding to a rather shallow and flat 
nanopit, shows that the line Σ | |W=  will cross the instability line naL  at 2| | 0.18 /W Rκ=  and 
remain below the instability line paL  for all larger | |W -values. Therefore, any sufficiently large 
adhesive strength will spontaneously lead to a CA state for a supported membrane in contact with 
such nanopits. On the other hand, inspection of Fig. 5(b), corresponding to a cylindrical nanopit with 
vertical walls, shows that the line Σ | |W=  will cross the instability line naL  but not the instability 

17



 

 
  

 

M
ax

 P
la

nc
k 

In
st

itu
te

 o
f C

ol
lo

id
s 

an
d 

In
te

rf
ac

es
 · 

Au
th

or
 M

an
us

cr
ip

t 
ACCEPTED MANUSCRIPT

line paL , at least within the area of the figure. This implies that supported membranes in contact with 
such nanopits will remain in (meta)stable PA states even for very adhesive substrates with large | |W . 

The transition between these two regimes can be understood from the limiting behavior of the 
instability line paL  at large membrane tension, given by Eq. 15. Indeed, this equation can be rewritten 

as ( ){ } 1

np inΣ 1 cos[arctan ] | | | |z r W Wα
−

′≈ − ≡ . As long as the nanopit does not have vertical walls, 

we find 1α > , and the line Σ | |W=  will eventually cross the instability line paL . As the walls of the 
nanopit are made more vertical,the value of α becomes closer to one, and the two lines become more 
parallel to each other, leading to an increase in the value of | |W  at which the two lines cross and the 
PA state becomes unstable for a supported membrane. Ultimately, for a nanopit with vertical walls, 
we find 1α = , implying that the two lines become exactly parallel and do not cross for any | |W -
value. Therefore, in the extreme case of nanopits with vertical walls (and only in this case), PA states 
will remain metastable for all values of the adhesive strength | |W . This can be seen explicitly by 
comparing Σ | |W=  with the exact expression of paL  for cylindrical nanopits, see Eq. 17. For all other 
nanopits with non-vertical walls, there will be a value of | |W  above which both NA and PA states are 
unstable towards CA states. 

After the vesicles (large or small) adhere and rupture onto the subtrate, the different patches of 
membrane arising from this rupture process will spread and creep across the surface and stitch 
together into a uniform and continuous supported bilayer. (28) In the presence of nanopits, the 
energetics and dynamics of this ‘coarsening’ process will be rather subtle, and should depend on the 
relative size of the membrane patches (i) with respect to the size of the nanopits, as well as (ii) with 
respect to the typical distance between nanopits. As an example of (i), note that whereas a small 
membrane patch may ‘sense’ the local curvature of a nanopit larger than itself (small displacements of 
the patch will affect both its bending energy as well as the length of its edge, and therefore its edge 
energy (29)), a large membrane patch that covers a whole nanopit will be trapped in a degenerate 
metastable state. Small displacements of the patch will not affect its energy, as long as the nanopit is 
fully contained within the boundaries of the patch. As an example of (ii), note that a membrane patch 
that is smaller than the typical distance between nanopits may simply ‘avoid’ entering a nanopit if this 
is energetically unfavorable (we note, however, that entering a nanopit may also be energetically 
favorable: whereas the bending energy of the patch will necessarily increase, its edge energy may 
decrease if the length of the patch boundary is reduced in the process). A membrane patch that is 
larger than the typical distance between nanopits, however, may only ‘avoid’ a nanopit by deforming 
the shape of its boundary. If the energetic cost of this process is too large, it will be favorable for the 
membrane patch to instead spread over the nanopit, leading either to a NA, PA or CA state, depending 
on the adhesive strength of the substrate. All in all, we expect the coarsening process of supported 
lipid bilayers on substrates with complex topography to show a rich spectrum of behaviors. 

Giant Unilamellar Vesicles 
A different model system that can be used to experimentally test the theoretical results described here 
is provided by Giant Unilamellar Vesicles (GUVs). In the context of testing our experimental 
predictions, it is important to note that an isolated GUV has a fixed number of lipids on its membrane, 
and therefore a certain optimal area. The mechanical tension of its membrane is coupled to the lateral 
stretching or compression of the membrane above or below this optimal area. Therefore, for an 
isolated GUV, tension is not a fixed parameter, and instead depends in a complex manner on the 
shape and geometric constraints of the vesicle, as well as on the adhesiveness of the substrate. (30) 

Alternatively, one may perform experiments using micropipette-held vesicles. In a micropipette setup, 
part of the GUV is aspirated (the ‘tongue’), whereas the majority of the GUV remains outside the 
micropipette. By controlling the aspiration pressure, and therefore the length of the tongue, the tension 
of the membrane becomes an externally tunable control parameter. With respect to small 
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perturbations of the part of the GUV outside the micropipette, the membrane area stored in the tongue 
then behaves as a membrane reservoir at fixed tension Σ . (31) 

Such a micropipette setup is ideal to explore the stability of NA, PA, and CA states as described here, 
see Figs. 3(b) and 5(b), because | |W  and Σ  can be varied independently from each other. However, 
directly determining the specific state of a membrane in contact with a single nanopit may prove 
experimentally challenging. In this case, one could directly explore the effective adhesiveness eff| |W  
of a substrate patterned with many such nanopits. Indeed, suppose that a micropipette-held GUV is 
pressed against a topographically patterned substrate in such a way that the vesicle–substrate contact 
area extends over a large number of nanopits. Measurements of the force required to detach the GUV 
from the substrate can then be used to gauge the effective adhesiveness eff| |W  of the substrate. (31–
34) 

Of particular interest will be to explore the effective adhesiveness of the substrate as a function of the 
tension of the membrane. As shown in Fig. 6(a), the effective adhesiveness is generally expected to 
decrease with increasing membrane tension. But not only that: due to the existence of bistable 
behavior with coexistence of NA and CA, or PA and CA branches, the system should exhibit 
hysteretic behaviour when subject to cycles of increasing and decreasing tension, as described above. 
One example of a hysteresis cycle of decreasing and increasing tension is depicted by the points 1–4 
in Fig. 6(a). In the case of a micropipette-held GUV, this would correspond to decreasing and 
increasing the aspiration pressure. 

We note that, in the present work, we have focused on the adhesion of vesicles to nanopits, i.e. pits 
that are much smaller than the vesicle, so that the vesicle-substrate contact region is expected to cover 
many such pits. The opposite situation, corresponding to a vesicle adhering to a concave pit of size 
comparable to or larger than the size of the vesicle, has also been studied theoretically. (26, 27) In the 
latter works, it was shown that the critical adhesive strength necessary for binding of the vesicle to the 
substrate is lower in concave pits than in flat substrates. 

Biological cells 
The adhesion of biological cells to substrates topographically patterned with nanopits has been 
explored in a number of experiments. (3–10, 15–18) A common observation in the majority of these 
experiments has been a decrease in cell spreading in the presence of nanopits with respect to the same 
substrate in the absence of nanopits, see Ref. 3 for a review. Another particularly interesting 
observation, in Ref. 6, is that cells tend to migrate towards regions of lower nanopit density. 

Both types of observations seem to suggest that in these experiments the presence of nanopits caused 
a reduction of the effective adhesiveness of the substrate, with eff| | | |W W< . Our findings imply, see 
Eq. 22 and Fig. 6(b), that these trends may be reversed in more sticky substrates with larger adhesive 
strength | |W , as well as for cells with lower membrane tension Σ . Alternatively, it may be possible 
to engineer the shape of the nanopits in order to make the right hand side of Eq. 22 as small as 
possible, so as to minimize the critical value of the adhesive strength above which nanopits begin to 
enhance the effective adhesiveness of the substrate. In regard to this we note that, as can be inferred 
from Fig. 6(b), this critical value of | |W  is only very weakly dependent on the depth of the nanopit 
(i.e. on the value of /h R ), and instead depends more strongly on the finer details of the nanopit 
shape. 

Membrane rupture and defect formation  
Troughout the paper we have assumed at all times that the membrane will remain continuous and 
intact in the presence of the nanopits, i.e. that the membrane will not rupture or form defects in order 
to avoid regions of high curvature. Is this assumption justified? As an example, let us consider a 
nanopit with a strongly curved rim with radius rimR R�  such as the one in Fig. 2. The energetic cost 
for the membrane to be bound to this rim can be approximated as a quarter of the bending energy of a 
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cylinder with radius rimR  and length 2 Rπ , giving ( ) ( )2
be,rim rim/ 2 /E R rπ κ≈ . On the other hand, if 

the membrane ruptured in order to avoid adhering to said rim, this process would require the 
formation of two membrane edges of length close to 2 Rπ , with an energetic cost edg edg 4E Rλ π≈ , 

where edgλ  is an edge tension or edge energy per unit area. (29) The typical value for such an edge 

tension, found in experiments and simulations, is about 20
edg 10 pN 10  J / nmλ −=� . (35) Rupture of 

the membrane in order to avoid the highly curved rim will be energetically favored whenever 

edg be,rimE E< , which results in the condition ( ) ( )rim edg/ 8 /r π κ λ< , implying that indeed the 
membrane prefers to rupture at very strongly curved regions. However, introducing the typical values 
for edgλ  and the bending rigidity 1910κ −

�  J, we find rim 3.9r <  nm. As a consequence, we expect 
that rupture of the membrane will only be preferred at extremely sharp ‘kinks’ of the substrate, with 
curvature radii comparable to the thickness of the membrane itself. 

Multicomponent membranes  
Above, we have focused on laterally-homogeneous membranes with a symmetric bilayer, i.e. on 
membranes that can be described as having the same bending rigidity κ and zero spontaneous 
curvature 0m =  everywhere. Strictly, such a description should be expected to apply only to 
membranes consisting of a single lipid species or a mixture of very similar lipids. In general, however, 
biomembranes may be composed of many different lipids and membrane proteins. These individual 
components may have different affinities toward the substrate or different preferred curvatures, 
leading to adhesion- or curvature-induced enrichment or depletion of certain components in specific 
regions. The compositions of the two monolayers that make the bilayer may vary independently, 
leading to a spatially inhomogeneous spontaneous curvature of the membrane. (36) Moreover, the 
different components can genuinely phase-separate, forming well-defined domains of one phase in a 
surrounding matrix of the other phase, with each phase having different curvature-elastic and adhesive 
properties. Indeed, model membranes with as little as three components can phase-separate into two 
macroscopic fluid phases, a liquid-ordered (Lo) and a liquid-disordered (Ld) phase. (37) What effect 
will this added complexity have on the adhesion of biomembranes to substrates patterned with 
nanopits? 

CA states will still be always (meta)stable, given that this behavior is independent of the material 
parameters of the membrane, and therefore independent of the details of the local membrane 
composition at the bottom of the nanopit. The stability limits of NA and PA states, however, will 
depend on how the membrane components self-organize around the nanopit, and thus on the details of 
the membrane composition. The basic qualitative result that for weak adhesion NA or PA states are 
energetically preferred, whereas for sufficiently strong adhesion CA states are preferred, will remain 
valid independently of the compositional complexity of the membrane. However, the specific values 
of adhesion at which each state becomes energetically preferred may shift due to a multitude of 
effects. For example, if some of the membrane components have non-zero preferred curvatures, the 
cost of bending the membrane in order to adapt to the nanopit shape will be lowered, and CA states 
will be favored by enrichment of these components near the nanopit. Similarly, CA states may be 
favored by the existence of phase-separated domains, because adhesion of the domains to the nanopits 
will reduce the length of the domain boundary and therefore the line tension energy of the system. On 
the other hand, if a membrane were composed of a mixture of lipids, some of which are attracted to 
the substrate while others are not (or are repelled from the substrate), we would expect NA states to be 
favored, because in this way the latter components may avoid the substrate by accumulating in the 
non-adhered regions of the membrane above the nanopits. One may think of many other factors that 
will similarly favor one state over the other two: due to the high dimensionality of the parameter 
space, developing a general theory of adhesion of multicomponent membranes to nanopit-patterned 
substrates is a difficult task. 

Ignoring the transitions between states, however, one may ask how the presence of the nanopits will 
affect the lateral organization of the membrane components. Membranes in a CA state and 
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membranes in a NA state will behave rather differently in this regard. In a CA state, the whole 
membrane is adjacent to the substrate, but the curvature of the membrane is non-uniform. In this case, 
the different membrane components may reorganize to adapt to this non-uniform curvature. 
Experiments with lipid bilayers made from ternary mixtures supported on undulated substrates with 
weakly curved plateaus and strongly curved grooves have shown that the more rigid Lo domains will 
localize at the plateaus and avoid the grooves. (38) Theoretical modelling of the same system (39) 
shows that localization of Lo domains will occur if the length scale given by ( )o d /κ κ λ−  exceeds a 

certain critical value related to the topographical features of the system (here, oκ  and dκ  are the 
bending rigidities of the Lo and Ld phase and λ is the line tension of the domain boundary). 
Otherwise, the membrane will ‘ignore’ the topography of the substrate and simply phase-separate into 
two large domains. This implies that localization will occur only if the rigidity contrast between the 
two phases is sufficiently large or the line tension is sufficiently small. A similar result may be 
expected to hold for a nanopit-patterned substrate, with rigid Lo domains avoiding the nanopits and 
localizing at the flat regions between them. 

In a NA state, on the other hand, the whole membrane is flat, but now some regions of the membrane 
are adjacent to the substrate while others are not. This will lead to reorganization of the membrane 
components depending on their affinity towards the substrate, with high affinity components being 
enriched in the adhering region outside the nanopits, and low affinity components being enriched in 
the non-adhering regions above the nanopits. Once again focusing on phase-separating mixtures, 
theoretical studies have shown that, in such a situation, domain formation can either occur in the non-
adhering regions or in the adhering regions, but never in both. (40, 41) In experiments with pore-
spanning membranes, which are in a sense analogous to NA/PA states, Lo domains were observed to 
be confined to the non-adhering regions of the membrane above the pores. (42) 

Nanopit shapes: Limitations and generalizations  
As described in Methods, throughout this paper we have focused on nanopits with a smooth 
axisymmetric shape that satisfies certain conditions: The defining height function ( )npz r , defined on 
the interval 0 r R≤ ≤ , was taken to be (i) non-decreasing with only one inflection point in its 
domain, (ii) differentiable at least once, and satisfying (iii) ( )np 0 0z′ =  and (iv) ( )np 0z R′ = . 
Condition (i) ensured that the nanopit has a simple shape with a single minimum, whereas conditions 
(ii–iv) ensured the smoothness of the shape, i.e. the absence of ‘kinks’ on the nanopit surface. We 
found that the adhesion of membranes to any such nanopit presents a number of universal features, 
namely that CA states are always metastable (see Eq. 11); that NA states become unstable at a 
tension-independent critical adhesive strength (see Eqs. 12 and 16); that the instability of NA states 
can be continuous towards PA states, or discontinuous towards CA states at low membrane tension if 
the nanopit shape satisfies certain condition (see Eqs. 13 and 14); and finally that PA states become 
unstable discontinuously towards CA states at a tension-dependent adhesive strength (see Eqs. 15 and 
17). If the nanopit shape ‘breaks’ some of the conditions (i–iv), the adhesion of the membrane to the 
nanopit will no longer exhibit all these features, as discussed below. 

First, let us consider a nanopit that breaks condition (iii), i.e. that has a ‘kink’ at its bottom, such as the 
cone-shaped nanopit displayed in Fig. 7(a). In this case, CA states are no longer (meta)stable always: 
in fact, CA states become strictly impossible, because the membrane cannot adapt its shape to the 
kink without rupturing or forming a defect. Increasing values of the adhesive strength | |W  will 
therefore only lead to more deeply-adhered PA states. For the particular case of a tensionless 
membrane in contact with a cone-shaped nanopit such as the one in Fig. 7(a), scale invariance of the 
bending energy implies that the shape and energy of the unbound segment are independent of the 
contact radius *r , and therefore that the adhesion process is governed by the competition between 
adhesion and bending in the bound segment, with the equilibrium condition ( )2 *

np| | 2W M rκ= . The 

mean curvature of the nanopit at the contact line is given by ( )* *
np sin / 2M r rα= , where α is the 
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(a)

(c)

(b)

(d)

Figure 7:  More general nanopit shapes (in black) that ‘break’ some of the conditions that we 
imposed in the Methods section: (a,b) Nanopits may be non-smooth and instead display a ‘kink’, 
which may be located (a) at the bottom, (b) at the rim, or elsewhere along the surface of the nanopit. 
(c) Nanopits may have ‘wiggly’ shapes with more than one inflection point along their profile. (d) 
Nanopits may be non-axisymmetric. In (a–d), the membrane is depicted in blue.  
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angle of the cone with the horizontal. We therefore find * sin / 2 | |r Wα κ= , implying that a 

continuous increase of | |W  leads to a continuous decrease of *r , i.e. to more deeply-adhered PA 
states, without ever reaching the CA state with * 0r = . 

Alternatively, a nanopit may break condition (iv) and have a ‘kink’ at the rim, such as the cylindrical 
nanopit displayed in Fig. 7(b). In this case, we expect NA states to be always (meta)stable, i.e. there 
will not be a critical adhesive strength above which the NA state becomes unstable. The reason is that, 
in order to adhere to the inside of the nanopit, the membrane will have to first bend into it (which 
implies both a bending and tension energy cost), without a concomitant gain in adhesion energy. 
There will therefore always be an energy barrier separating the NA state from the PA or CA states, 
independently of the adhesive strength of the substrate. We have used the numerical shooting method 
(described in Methods) to calculate the shape of a tensionless membrane when bending into a 
cylindrical nanopit with a 90 o  ‘kink’ at the rim, see the blue line in Fig. 7(b). The membrane must 
develop an ‘overhang’ in order to avoid the rim and still adhere to the walls. The state depicted 
corresponds to the ‘top’ of the energy barrier, with a barrier height given by 0.9 8πκ×� , of the order 
of several hundred Bk T  for a typical bending rigidity. This energy barrier will be even higher for 
membranes under tension. However, the energy barrier will be smaller (but still non-zero) for 
shallower nanopits, either with non-vertical walls, or with sufficiently short vertical walls, in which 
case the membrane will make initial contact with the bottom rather than the walls of the nanopit. 
Similar considerations will come into play if condition (ii) for the nanopit shape is broken, i.e. if the 
nanopit displays a ‘kink’ somewhere between its bottom and its rim. 

In Fig. 7(c), we display a nanopit with a ‘wiggly’ shape that breaks condition (i), in that its height 
function ( )npz r  has more than one inflection point in its domain, namely three in this case. This 
implies that the principal curvature of the nanopit that is perpendicular to the contact line changes sign 
three times, instead of just once. The fact that CA states are always (meta)stable and the existence of a 
tension-independent stability limit of the NA state remain unchanged independently of the number of 
inflection points, because our derivation of Eqs. 11–12 depended only on the local shape of the 
nanopit at the bottom or at the rim. However, we can show that in this case two or more distinct 
(meta)stable PA states will coexist with each other and with the CA state at sufficiently large 
membrane tensions. This can be directly inferred, in the limit of large tension, from the same 
argument that led to Eq. 15, because in this case | |W  will have n maxima as a function of *r  when 
the height function has 2 1n −  inflection points. The same conclusion can be reached, without 
recurring to the limit of large tension, for the special case of ‘stair-like’ nanopits constructed from a 
smooth combination of cylindrical and toroidal segments, using the same arguments that led to 
Eqs. 17–19. We note, however, that we have not rigurously established the relation between the 
number of inflection points and the number of coexisting PA states, at low tensions, for nanopits of 
general shape. 

Finally, it is also possible to relax the condition of axisymmetry, as in the non-axisymmetric example 
of Fig. 7(d). Both the numerical shooting method as well as the analytical small gradient 
approximation used in this work (see Methods) were based on the assumption of axisymmetry, and 
are thus not applicable to such nanopits. We can, however, make some educated guesses. First, we 
still expect NA states to be in general stable for sufficiently low adhesive strength, and to become 
unstable above a tension-independent critical adhesive strength. At the rim of a non-axisymmetric 
nanopit, the curvature rimC  perpendicular to the line where the nanopit meets with the flat substrate is 
no longer a constant and instead varies along the length of this line. Given that the contact curvature 
condition in Eq. 3 is valid for non-axisymmetric geometries, and that in the NA state the unbound 
membrane is completely flat with 0C⊥ ≡ , we may expect the NA state to become unstable for 

adhesive strengths above ( )2
rim| | min 2W Cκ= , i.e. to be governed by the weakest rim curvature 

along the length of the contact line between the nanopit and the flat substrate. Second, we may 
wonder whether the fact that CA states are always (meta)stable remains valid. It is tempting to 
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speculate that it will, as long as the bottom of the non-axisymmetric nanopit is smooth. However, it is 
also possible that the adhesive strength threshold for (meta)stability of the CA state is proportional to 
a measure of the local deviation from axisymmetry at the bottom of the nanopit, such as 

( )2
b b| |W M Kκ∝ − , where bM  and bK  are the mean and Gaussian curvatures at the bottom of the 

nanopit, which would still result in | | 0W =  for axisymmetric nanopits. Establishing this will 
presumably require a more general framework suited to non-axisymmetric geometries, such as the one 
used in Ref. 23. 

Conclusion 
In summary, we have shown that the adhesion of biomembranes to substrates topographically 
patterned with nanopits displays many universal features that are independent of the detailed shape of 
the nanopits. We have provided conditions for the stability of non-, partially- and completely-adhered 
states valid for a very general class of nanopit shapes, see Eqs. 11–15, as well as for the special case 
of cylindrical nanopits with vertical walls, see Eqs. 16–17. These conditions can be applied as 
guidelines to the design and analysis of experiments involving vesicles, supported bilayers, or cells in 
contact with nanopits. Furthermore, we have examined the coarse-grained effect of many nanopits on 
membrane–substrate adhesion. The presence of nanopits couples the tension of the membrane to the 
effective adhesiveness of the substrate, which should display hysteresis in response to cycles of 
increasing and decreasing tension. Nanopits can lead to both an increase or a decrease in the effective 
substrate adhesiveness, depending on the relative values of the real adhesive strength | |W  of the 
substrate and the membrane tension Σ , see Eq. 22. We have described in detail how our results relate 
to the existing experimental evidence for supported lipid bilayers and biological cells in contact with 
substrates topographically patterned with nanopits, and furthermore we have proposed an explicit way 
to test our results in experiments using micropipette-held giant vesicles in contact with such 
substrates. We have also discussed how the presence of nanopits may affect the integrity of the 
membrane, as well as the lateral organization of the different membrane components in the case of 
multicomponent membranes. Finally, we have pointed to exciting new directions in the theoretical 
and experimental study of membrane adhesion to nanopits with more complex shapes. 

As a final remark, it is worth noting that, besides nanopits, our results may be used to describe the 
entry and migration of membranes into cylindrical nanopores. In this case, partially-adhered states 
will become unstable towards growth of a membrane protrusion into the pore. The stability limit of 
the partially-adhered state will nevertheless still be given by Eq. 17. For a description of cell 
migration through micron-sized pores, however, deformations of the cellular cortex and active 
cytoskeletal forces as well as osmotic pressure effects are expected to become important. 
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